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The problem of the interaction of large-scale vortices with small-scale homogeneous 
isotropic helical turbulence in a compressible medium is considered. Averaged 
equations are derived using a closure procedure which is based on the functional 
technique. It is shown that the averaged vorticity equation has solutions that grow 
exponentially in time and which describe the effect of amplification of large-scale 
helical vortices by turbulence (hydrodynamical a-effect). The dependence of the 
growth rate on the compressibility is analysed, the limiting cases of incompressible 
fluid and turbulence &correlated in time being considered. The applications of the 
hydrodynamical a-effect discussed include the Earth’s atmosphere and interstellar 
gas of spiral galaxies. 

1. Introduction 
The effect of the generation of a large-scale magnetic field by helical turbulence in 

a conducting medium, developed by Steenbeck, Krause & Radler (1966), is usually 
called the alpha-effect (see also Moffatt 1978; Parker 1979; Krause & Radler 1980). 
By analogy, we call the generation of large-scale vortices in the helical turbulence the 
hydrodynamical alpha-effect (Ha-effect). This effect has been revealed by Moiseev 
et al. (1983b) (see also Sagdeev et al. 1984; Tur, Khomenko & Yanovsky 1984). They 
have obtained the mean-field hydrodynamical equations for homogeneous isotropic 
helical turbulence in a compressible fluid. As shown by these authors, the linearized 
equation has the same form as the appropriate cc-effect equation in mean-field 
electrodynamics : 

where B = V x V is a mean vorticity and the uniform coefficients a and v are related 
to the random velocity field parameters. The effect of the generation of large-scale 
vortices is associated with the term aV x sh in (1) which leads to exponential growth 
of vorticity. The factor a in this term expresses the helicity of turbulent motion. The 
idea that the helicity of the turbulence may influence the energy transfer from small 
scales to large ones has been discussed by Kraichnan (1973), Brissaud et al. (1973), 
Andre & Lesier (1977) and Moffatt (1981) but the averaged equations were not 
derived in these papers and therefore the large-scale instability was not specified and 
discussed. 

Later Sagdeev et al. (1987), Moiseev et al. (1987, 1988), Tur et al. (1987), 
Gvaramadze, Khomenko & Tur (1988), Frisch, She & Sulem (1987), and Sulem et al. 
(1989) found several examples of the a-effect in hydrodynamics, for an incom- 
pressible fluid. In all examples some additional factors, such as inhomogeneous 
regular flow, stable or unstable stratification, gravity force or anisotropy must 
supplement helical turbulence, to provide the instability. In these examples the Ha- 

a,n+av x n = V v w ,  (1) 
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effect takes a much more complicated form than in a compressible fluid and is 
characterized by a tensorial coefficient aij instead of the scalar a in (1) .  It appears 
from the above-mentioned papers that  the a-effect in hydrodynamics is as natural for 
helical turbulence as the effect of magnetic field generation in magnetohydro- 
dynamics. The Ha-effect ensures energy transfer in helical turbulence from small- 
scale vortices to large-scale vortex structures typical of many hydrodynamic 
systems. Since in the compressible case considered here the coefficient a is a scalar 
and the Ha-equation has the simplest form, i t  is justified to return to this case and 
discuss general properties of the Ha-effect using this simple but quite general 
example. Moiseev et al. (1983 b)  considered the Ha-effect under several simplifying 
assumptions. The major simplification consists in the assumption that the turbulent 
vortical velocity field is a random process &correlated in time. As a result, the 
coefficient a proves to be independent of the compressibility of the medium. Krause 
&, Riidiger (1974) have shown under similar assumptions that in an incompressible 
fluid the Ha-effect is precluded by the symmetry of the Reynolds stresses. One is thus 
led to examining the status of ( I )  in the compressible case and the conditions when 
this equation is applicable. Here we present both a qualitative discussion and a 
quantitative derivation of the Ha-equation in compressible fluid without restriction 
to a &correlated approximation for turbulence and analyse the dependence of the 
generation parameter a on the compressibility of the medium. As shown below, the 
compressibility enters through the parameter y = A c o r / ~ ~ c o r ,  where c is the sound 
speed, A,,, and T,,, are the energy-range spatial and temporal scales of the 
turbulence, respectively. Limits of both large and small y are considered below. In  
the weak-compressibility limit (y 4 1 )  we obtain a - y 2 ,  and a vanishes in the 
incompressible limit, when c+co (which is quite natural since there are no 
symmetry-breaking factors, apart from compressibility, in our problem). The 
opposite limit p 9 1 is realized when the correlation time is small with y+co in the 
&-correlated approximation. I n  this limit the factor a is independent of y ,  i.e. 
independent of the compressibility of the medium in accordance with the result of 
Moiseev et al. (19833). 

The paper is organized as follows. In  $2 the problem is discussed qualitatively. In 
$3 the derivation of the mean-field equation is outlined. In  $4 the coefficients a and 
v of the mean-field equation (1) are evaluated for the particular form of the 
correlation function of the turbulence. Their dependence on the compressibility of 
the medium is analysed, the incompressible limit and limit of short correlated time 
discussed. I n  $5 the large-scale instability is revealed in the derived equations. In  $6 
the results and applications of the Ha-effect are discussed. The details of derivation 
of the mean-field equation are presented in the Appendix. 

2. Basic ideas and qualitative analysis 
One starts from equations of motion that in a compressible medium have the form 

atP+a,(v,P) = 0, (3) 
where vo is the kinematic viscosity, c is the sound speed and p is the density. For 
simplicity, we consider a polytropic gas with P = py and y = 2. Let us assume now 
that in the medium described by (2) and (3) the turbulence is driven by an external 
stirring force (or in any other way). Let the velocity of turbulent pulsations be V’; 
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then the velocity and the density can be separated into regular and random 
components : 

v = vyr ,  t )  + V’(r,  t ) ,  (v) = Vl), ( V) = 0;  

p = po+p‘”(‘,t)+pl(r,t), 

( p )  = po+p‘”(r,t) ,  ( p ’ )  = 0;  

where po = const is a uniform background density, p(l)  and p’ are regular and random 
components of its variable part. After ensemble averaging, (2) and (3) take the form 

These equations contain the unknown quantities (Vk a, c) and ( Vk p’ )  which we 
refer as ‘Reynolds terms’ (related to Reynolds stresses) and a closure is required. So 
as to express the Reynolds terms in the mean fields P1), p(’) and the quantities that 
specify the random velocity and density fields. In the next section we do this 
explicitly using the functional technique while here we discuss the closure procedure 
qualitatively. 

First of all one needs to formulate the problem: 
(i) The mean values indicated by angular brackets are defined as ensemble 

averages. Interpretation of these averages can rely on the ergodic hypothesis. 
(ii) Our main concern is evolution of the large-scale solenoidal part of the P1) in 

the turbulent medium; hence the spatial, L,  and temporal, T ,  scales of the field V1)  
are assumed to be large compared to the respective energy-range scales h and r of the 
turbulence (L  %- A ;  T B 7 ) .  More generally, V1) consists of many harmonics of 
different scales; moreover, the turbulence has the effect that an initially narrow 
large-scale wave packet ultimately diffuses in scales. But we ignore this in our 
approach, which we call the two-scale approximation. 

(iii) The background turbulence (in the absence of the mean flow) is considered 
prescribed and we specify it as stationary, homogeneous and isotropic. All moments 
of such random field are invariant for a translation and rotation of the frame, i.e. 
there are no preferential directions or positions in the medium or is a certain time 
singled out. 

(iv) When a large-scale perturbation is superposed, the turbulence due to nonlinear 
interaction with the large-scale mean flow acquires an inhomogeneous part which is 
described by perturbations of the Reynolds terms. The background turbulence, 
however, is treated as independent of the mean flow (this approach seems to be 
justified if the amplitude of V1) is small) and it remains homogeneous and isotropic 
and does not contribute to the Reynolds terms. Hence, only an inhomogeneous part 
of the turbulence contributes to the perturbation of the Reynolds terms around their 
zero value. 

With this formulation of the problem, it is clear that the Reynolds terms 
(V,a,V,l) are the functional of P1) and generally this dependence may be 
complicated and nonlinear. But if the amplitude of V1)  is small the functional can 
be linearized and one can consider the Reynolds terms as a linear functional of vl). 
The single-point average, hence, can be presented as an expansion in gradients of the 
large-scale field V1)  : 

(v,p, t )  a, cp, t ) )  = q o )  + ~ t . 9  vpp, t )  + T:;; a, v j y r ,  t )  

+ a, a, vE)(l‘, t )  -k a k a ,  a, vil)(r, t )  . . . , (6) 
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where the tensorial coefficients T(i )  should be expressed in terms of the moments of 
the turbulent fields. When the medium is homogeneous, T@) are uniform and 
independent of position. Since the medium is isotropic, tensors Ti)  are invariant 
under rotation. They can consequently be constructed only from invariant tensors Si,  
and eiik (where Sik is a Kronecker delta and eijk is an absolutely antisymmetric tensor) 
and scalar parameters that  specify the turbulent field (cf. Batchelor 1953). Then, the 
solenoidal part of the Reynolds terms can be written in the form (Tio) vanishes 
because Reynolds terms have to vanish when V1) is identically zero): 

( q ( r ,  t )  a, q r ,  t ) )  = c, v p  + c, E i j k  a, v p  + c, vzvp + c, vzEijk a, vp 
+ c, v4 vp) + . . . 

= E i j k  a,(c, + c, v2 + c, v4 + . . . + c,,,, v * n  + . . .) v p  
+ (C, + c, v2+ c, v4+ . . . + c,, V2" + . . .) vp ,  (7) 

where the coefficients C,, C,, C,, . . . , C,, with even subscripts are scalar constants and 
the coefficients C,, C,, C,, . .. , C,,,, with odd subscripts are pseudoscalars. It is clear 
that the average ( V, a, <) is a polar vector, and the quantity C, eijk a, Vil) is also a 
polar vector only when C, is a pscudoscalar. In  the next section we derive the 
equation which governs the evolution of large-scale vortices under influence of small- 
scale helical turbulence. It is clear from (6) and (7)  that the helicity alone (or another 
non-invariant for the space reversal characteristic) is insufficient for the Ha-effect 
but additional violation of symmetry (e.g. comprcssibility) is required, In fact, in the 
incompressible case (when a, V ,  = 0) the nonlinear term ( Vk ak <) can be represented 
as a,( v k  <). The tensor (V, V i )  is symmetric in subscripts and one immediately 
concludes that the tensor Tli), is also symmetric in subscripts i, k and cannot be 
proportional to E i k l ;  hence, all coefficients C,,,, must vanish. A tensor of rank three 
cannot be constructed from Si,  alone, hence the Ha-effect is precluded in isotropic 
homogeneous turbulence of an incompressible fluid (Krause & Rudiger 1974). 

Nevertheless, the Ha-effect in helical turbulence in an incompressible fluid does 
exist, provided some symmetry of the problem is violated. The role of the symmetry- 
breaking factor can be played by, for example, the inhomogeneous steady flow (Tur 
et al. 1987; Gvaramadze et al. 1989) or a temperature gradient in a gravity field 
(Sagdeev et al. 1987 ; Moiseev et al. 1988). In these cases tensors 7(i) are free from the 
restriction that they must be symmetric under rotation and translation of the frame. 
They can involve not only eZkl and S,, but also the quantities that specify the imposed 
inhomogeneity and anisotropy. A similar situation occurs in the anisotropic kinetic 
alpha-effect of Frisch el al. (1987) who considered the background of a parity-non- 
invariant turbulent velocity field. 

In  the compressible case the nonlinear term cannot be represented as a,( Vk V ; ) ,  
therefore the tensor Ti:\ need not be symmetric in subscripts and the non-zero a-term 
is not precluded. In  the next section we derive the averaged equation and obtain an 
explicit expression for the coefficient a, while here we estimate a using dimensional 
considerations. 

According to (ii) in the formulation of the problem given above, we split the 
random component of the velocity V' into two  parts : V' = Vt + v, where Vt denotes 
the background turbulence, defined in (iii), and P refers to the inhomogeneous part 
of the turbulence which arises owing to the interaction between fll) and Vt. The 
equation which governs the perturbation will be written in the next section, while 
the properties of Vt are prescribed by (iii). Note that the background turbulence 
alone does not contribute to the Reynolds term. Indeed, the single-point correlation 
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(vt, a, v,") vanishes when Vt is a homogeneous random vector field. Then (& 8, K) 
in (6) and (7) is now understood as a sum ( ~ , a k v ~ + T / ' t , a , ~ + ~ k a a , ~ ) .  The 
constants C, can be represented as infinitc scrics in unperturbed correlation functions 
of increasing orders. In  turn, each term in this series is an averaged quantity 
featuring the unperturbed velocity field contracted with invariant tensors Si, and 
e,*,. The form of such expressions is rather bulky so we evaluate the coefficients C, 
in a second-order correlation approximation. In  this approach we assume that the 
second-order Correlation function provides a sufficiently good description of the 
turbulence. 

The correlation tensor of the unperturbed homogeneous isotropic turbulence can 
be written in the form (see e.g. Monin & Yaglom 1975) 

(Vt (r , , t , )  V i ( r 2 , t 2 ) ) ,  = A(r ,7)Si ,++B(r ,7)r i r ,+H(r ,7)e i jkrk ,  r = rl-r2, 7 = t , - t , .  

The correlation function (8) contains a single pseudoscalar function H(r, 7), which 

( 8 )  

~~ 

represents the helicity. 
H ( 0 , O )  = $ ( V t ( r ,  t )  * v  x V ( r ,  t ) ) .  

In  our formulation of the problem (see (iv) above) a non-vanishing contribution to 
the Reynolds terms arises only when the turbulence becomes inhomogeneous, which 
is possible only if the mean velocity is assumed non-uniform. Therefore if V1) were 
to be uniform the Reynolds terms would vanish; hence, C, vanishes. From 
dimensional considerations, 

C ,  - k(O, 7 )  d7 - H ( 0 ,  0) 7,,,, 

C,  - [ A @ ,  7 )  d7 - A(0,O) 7,,,, 
J 

with the understanding that the coefficients of the expansion (7) rapidly decrease. 
Indeed, from dimensional arguments we see that C,  - h2C,; V2V1) - Lp2P1),  where 
h is characteristic spatial scale of functions A ,  B, and H in (8), and L is a spatial scale 
of mean velocity Vl). Therefore, 

c, v2ai v p  - c, aj vp, 
c, v4 v p  - (h/L)2 c, v2 vp, 

That is (6) is actually an expansion in a small parameter h / L  and the higher terms 
can be neglected. 

It appears from (7)  that the term which is proportional to C, is responsible for the 
Ha-effect. The next term, proportional to C,, contributes to the dissipation in the 
vorticity equation and (10) presents an estimate of the turbulent viscosity. 
Comparing ( 1 )  and (7)  leads to a - C ,  and v - C,. It is apparent from (7)  that  in order 
to givc rise to the Ha-effect, the turbulence has to be parity-non-invariant. Let us 
discuss this crucial point in a little more detail. 

When we say that the turbulence is lacking parity-invariancc we always imply 
that some statistical parameters of such turbulence are non-invariant under 
reflection of spatial variables, while all moments of the turbulent field, of course, 
remain true tensors. One can distinguish, consequently, the right-handed frame from 
the left-handed one by measuring these parameters, e.g. the correlation function of 
the scalar product of the velocity and vorticity (V-V x V). A familiar example of 
turbulence lacking parity-invariance is provided by helical turbulence. 
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In  addition we would like to note that the discussion presented in this section 
should not be regarded as a rigorous proof, but as a rule of thumb, which does not 
contain all the peculiarities inherent in the compressible case. I n  the next section we 
take into account compressibility and sketch the derivation of the averaged equation 
which governs the Ha-effect in a compressible medium. A more strict and detailed 
derivation, based on the variational technique, is presented in the Appendix. 

3. Closure of the averaged equation and the emergence of the a-term 

force F ((F) = 0). The random velocity Vt (( Vt) = 0) obeys 
Consider the turbulence in a compressible medium driven by a random stirring 

where po = const is the uniform background density, pt is the random pulsations of 
density associated with turbulent motion ( ( p )  = po, (p t )  = 0). The external random 
force F is assumed to be homogeneous and isotropic so that the correlation tensor 
(or a covariance matrix) of the field Vt has the form (8), while the correlator (pt Vt) 
vanishes. Thus, the homogeneous isotropic stationary helical turbulent fields Vt and 
pt governed by (1 1) and (12) are regarded as an unperturbed state. 

Let us introduce a large-scale vortex perturbation P1) into such turbulence. This 
perturbation interacts with the turbulence, producing thereby inhomogeneous 
random components and p". Then the velocity and the density fields can be 
represented as 

(13) I v = W ( r ,  t )  + V y r ,  t )  + q r ,  t ) ,  

(v) = V ( l ) ( r , t ) ,  ( V t )  = (6 = 0;  

p = Po + P ( V ,  4 +Pt(', t )  + m, t ) ,  

( P )  = Po +P(l)(r, 4, (Pt) = ( p " )  = 0. 

Mean fields W ( r ,  t )  and p(l)(r,  t )  are described by the averaged equations 

a,p(l)+a,((vt,p")+(V~Pt)) = 0. (15) 

Thus, we assume that Vt and pt continue to obey equations (1  1) and (12) while all 
inhomogeneous variations of the random fields are described by functions p(r ,  t )  and 
p(r ,  t )  through equations 

(16) 
C2 

Po 
a , ~ - v o v 2 ~ + - a i p "  = -vpa,vq-vt,a,vp, 

. a,p"+p,a, V, = -ak(vppt+ v7:~'~)) .  (17) 

In  these equations the terms nonlinear in perturbations Pi), p( l )  and P, p are 
supposed to be small and are omitted (this seems to be justified a t  least when the 
amplitudes of the mean fields V1) and p( l )  are small). 

Averaged equations (14) and (15) involve unknown terms contained in the angular 
brackets (the Reynolds terms) and a closure is required. Here we use the simplified 
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approach to concentrate on the physical picture of the effect, leaving a more strict 
consideration to  the Appendix, where the closure based on the Furutsu-Novikov 
formula is performed. As we see above, the general form of the linearized averaged 
equation is 

a, V+aV x V =  VV2V. 

Our purpose now is to demonstrate the emergence of the term aV x V from the 
basic equations. Indeed, the averaged equation (14) involves the Reynolds terms (c ak V:)  + (Vt, ak c) which can be written in the form 

(Vkakv:)+(vt,akq) = a ~ ( ( ~ k V : ) + ( V t , ~ ) ) - ( V : v .  V)-(cv. vt). (19) 

The first term on the right-hand side of (19) cannot lead to a term of the type aV x V 
in the averaged equation because the tensor ( ( r k V i ) + ( V t ,  q))  is symmetric in 
subscripts i and k .  The mean value ( c V .  Vt) cannot result in an a-term because the 
helical part of the correlation function of the background turbulence Vt, represented 
by the last term in (8) 

( V :  Vj)(h.pJ = H ( r ,  7) eijk r k ,  

fits the condition a,(V; Vj)(h.p.) = ( V i V -  V )  = 0 by construction. Hence, it is the 
mean value ( V i V .  V) which gives rise to the a-term in the averaged equation. A 
scalar quantity p, = V .  t obeys the wave equation with a stirring force: 

a;v-c2v2v-vOv2atp, = -2a,(a, vp) (a, V L ) .  (20) 
The right-hand side of (20) varies at  the high frequency w - 1 / ~ ~ ~ ~  and its amplitude 
is modulated by a slow function Vl). Therefore, p, oscillates at  a higher frequency of 
the same order as that of Vt. The approximate solution of this equation can be easily 
derived by using the Fourier transformation in fast variables : 

Multiplying this with Vj and averaging over an ensemble one h d s  

After inverse Fourier transformation we obtain the one-point average 

( q r ,  qvp, t ) )  = -26, vy+, t )  

The final result is reached on substituting the correlation function of form (A 6) and 
after slight adjustment of notation ( V -  V = p,) reads 

iwk, k ,  G ( k ,  w )  dk dw. I c2 k2 - w2 + iv, k2w 
( q ( r ,  t )V-  V(r,  t ) )  = -2e,,,, a ,  vil)(r, t )  

Performing the integration over the angles this reduces to 

where a is defined by 
( q r ,  t )V .  V(r,  t ) )  = av x W ( r ,  t ) ,  

+Q1 G ( k ,  w )  iw 
a = -!jnI -03 do[: k 4 d k  c2 k2 -w2 + iwv, k2' 
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where G(k, w )  is the helicity-related coefficient in the Fourier transformation of the 
correlation function (see (A 5) and (A6)) .  Thus, the a-term in the mean-field 
equation is associated with the non-uniform scalar field cp = V -  P which contributes 
to the solenoidal part of the average ( VtV. @. Since the quantity aV x V1) is a slow 
one, higher-frequency components of the field p, are compensated by higher- 
frequency components of the field Vt which always exist in a continuous spectrum of 
the turbulence. ~ 

The turbulent viscosity has been evaluated by Krause & Riidiger (1974) and is 
given by 

2v0 k2 - iw 
( y o  k2 - iw), 

+W 

D(k, w ) ,  v = vO+#c dw IOw dkk2 

where D(k, w )  is the scalar coefficient in the Fourier transformation of the correlation 
function (see (A 5) and (A 6)). 

Equation (18) is the desired result of the closure of the averaged equation, while 
(21) and (22) for a and v provide explicit expressions for coefficients C ,  and C ,  in t,he 
expansion (7). 

4. Dependence of a on compressibility and some limiting cases 
Let us consider the structure of (21) in more detail. The integrand depends 

parametrically on the sound speed c and the kinematic viscosity vo, while helicity 
G(k, w )  depends parametrically on characteristic scales of the turbulence 7,,, and A,,, 
(G(k, w )  = G(kA,,,, 07,,,), as follows from dimensional arguments). 

Further suppose that the spectral density of the correlation function of velocity 
and vorticity G(k, w )  factorizes : 

GW, w )  = 90 G,(w) G,(k), (23 ) 
where go is a dimensional constant and G, and G, are dimensionless functions. (Since 
we consider a prescribed turbulence which is exited by a stirring force, this 
assumption amounts to a special choice of the random force.) As an example, 
consider the function G,(w) of the form 

where w,,, - 1/7c0r. I n  the limit 7,,,+0 (w,,,+co) the spectral density tends to a 
constant : 

lim G,(w) = (in): = const. 

This limiting case corresponds to the white noise or a random process &correlated in 
time. Indeed, the inverse Fourier transformation of (24) reads 

wcor+m 

G1(7) = (2~c-4 d o  exp (-iw7) G,(w) = $,,, exp (-w,,, 171) r: 
= exp ( -  1~1/7,,~), lim G1(7) = 6(7). 

Tcor+O 

Substituting (23) and (24) into (21) and performing the integration over w one arrives 
a t  the following expression for 01: 
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Notice that in the limit w,,, +co (i.e. T,,, --f 0) this reduces to 

a - z g o ~ ~ k 4 d k G 2 ( k )  - H(0,O) - ( V t ( ( r , t ) - V x  V ( ( r , t ) )  

in agreement with the estimate (9). To perform the integration over k in (25), the 
form of the function G2(k) should be specified, for example as 

G2(k) = exp ( -A:,, k 2 ) .  

a = ~~7CtgoA~: , ,u2(1-2 ,u2+2Rf ,u3  exp (,u2)[1-+(,u)l}, 

(26) 

(27) 

Substitution of this into (25) yields 

where 

qj(,u) = 2n-i exp ( - t 2 )  dt. I 
Here ,u is the dimensionless parameter given by 

Equation (27) for a is exact for the adopted model correlation function specified by 
(23), (24) and (26). Let us analyse (27) in two limiting cases; for ,u % 1 and ,u Q 1. In 
the former case using the asymptotic form of the error function +(,u) (see e.g. Janke, 
Emde & Losch 1960) we obtain 

a z ~ d g O A ; : , ( 1 - $ - 2 )  for ,u% I .  (29) 

a z idgo  ~;&(,u2 - 2p4) for ,u Q I .  

It can be seen from (29) that the leading term in the asymptotic expansion of a for 
large ,u is independent of ,u. This limiting case corresponds to a random process 6- 
correlated in time. Indeed, it is apparent from (28) that ,u +co when T,,, + 0 provided 
that the values of vo and c are finite. In this case one is led to a - H(O,O) ,  which 
recovers the result of Moiseev et al. (1983b). 

When vo 6 c27,,, the viscosity in (28) can be neglected and it becomes clear that 
,u - (A,,,/T,,,)/c is an analogue of the Mach number. The limit T,,,+O with ,u+co 
is formally equivalent to the limit c + O ,  ,u+co. Therefore, when the turbulence is 
considered as a random process &-correlated in time, provided that c is finite, a 
becomes independent of the sound speed. 

The transition to an incompressible fluid can be accomplished by putting c + c o  
provided that T,,, is finite. Then ,u --+ 0 when c +co and a vanishes in this limit. One 
is led consequently to the already known conclusion that in incompressible isotropic 
homogeneous turbulence the Ha-effect cannot be realized. 

In the opposite limiting case, ,u 6 1, (27) reduces to 

5. The large-scale instability 
The linearized averaged equation (18) has unstable solutions which describe the 

generation of the large-scale vortices. This can be easily shown using the Fourier 
representation. In fact, looking for a solution W ( k )  = ( V g ) ( k ) ;  V g ) ( k ) ;  0) with the 
wave vector k parallel to the z-axis, one obtains for the growth rate 

y = ak-vk2. 



364 G. A .  Khomenko, S. S. Moiseev and A .  V .  Tur 

The mode with the wave vector k = k, = a/2v grows most rapidly. I ts  growth rate 
is ymsx = a2/4v, where v is the turbulent viscosity which is proportional to  the energy 
of the turbulence, while a is proportional to the helicity of the turbulent velocity 
field. Hence the characteristic scale L = k;' of the instability is 

L N via. 

When the compressibility parameter p is large (p B l), coefficient a is independent of 
p and the scale of instability is 

r 

where I is the topological invariant and E is the energy invariant. These quantities 
are closely associated with intrinsic properties of the turbulence and are conserved 
in an ideal fluid. 

When compressibility is weak (i.e. p -4 1 )  the scale of the instability becomes 
larger, acquiring the factor p-2 : 

L N p P 2 E / I ,  p < 1.  

The structures generated by helical turbulence can be considered as large-scale ones 
provided L B A,,,, i.e. when E / I  B Acor. This inequality restricts the values of 
parameters that specify the correlation function of the turbulence. When L % A,,, 
and ( (V ' ) )" )  - A2/ r2  we find T - y-l % r,,,, that is the large-scale structure is 
automatically a slow one. 

Note an important feature of the structures generated : they are helical themselves 
because they are characterized by a non-vanishing scalar product (vC')-V x P). 

6. Discussion and applications 
As we have seen, the averaged equation (18) has unstable solutions associated with 

the a-term which provide the positive feedback between different components of the 
large-scale vector field. A question arises as to which role is played by the 
compressibility in the generation of a purely solenoidal field by solenoidal turbulence. 
To answer this question let us remember that the a-term is associated with the 
average ( V'V- 6 and return to equation (21) for a. There are two contributions to 
the integral (21) : the first arises from the singular points of the correlation function 
and the second is associated with the poles of the Green's function (i.e. the roots of 
the denominator). Both of them correspond to  the resonances of the scalar field V. 
and the vector field V'. Note that, for the model correlation function specified by (23), 
(24) and (26) these contributions have the same order of magnitude. I n  the white- 
noise limit (or a process &correlated in time) we have G ( w )  = constant and the 
singular points of the Green's function solely contribute to  the integral. Furthermore, 
this contribution does not depend on the position of the pole and thereby is 
independent of the sound speed. c.  

The a-term in the averaged equation ensures a positive feedback between different 
components of the solenoidal velocity field. The appearance of the a-term in t.his 
equation is associated with the helicity of small-scale turbulence rather than with 
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compressibility ; the compressibility plays the role of a symmetry-breaking factor 
that changes the symmetry of the basic equations. As mentioned in $2 there are 
several possible symmetry-breaking factors that can lead to the Ha-effect in an 
incompressible fluid. (Examples of the Ha-effect in an incompressible fluid have been 
considered in detail by Gvaramadze et al. 1989 and by Moiseev et al. 1988.) 

Helicity is one of the most important characteristics of any vector field. The 
integral over the liquid volume, I = !( V. V x V) dr, is an integral of motion in an ideal 
fluid and characterizes linkages of vortex lines. Note that the invariant I is a 
pseudoscalar, hence all fluid motions for which I + 0 lack parity-invariance. 

Since helical turbulence can give birth to large-scale structures, a laboratory 
experiment concerning this effect would be very interesting. Unfortunately, we are 
not aware of any such experiments and so natural phenomena are a unique source of 
experimental information. As discussed in detail by Moiseev et al. (1983a), tropical 
cyclones (typhoons) can be an example of such helical structures in the atmosphere. 
Their arguments are the following. It is well-known that the air streamlines in a 
typhoon are linked (and the flow is helical) because intense horizontal circulation is 
complemented by a weaker poloidal one which is essential for the existence of 
typhoons (see e.g. Riehl 1976). Furthermore, i t  is commonly accepted that typhoons 
gain their energy from small-scale turbulent convection ( A  - 10 km). Under the 
influence of the Coriolis force the convection, which can be regarded as a small-scale 
random background, becomes helical. Estimates of the growth rate and characteristic 
scale of the instability are in qualitative agreement with observations of typhoons. 
Moreover, this model explains the anticyclonic (cyclonic) character of typhoons in 
the northern (southern) hemisphere and gives a reasonable estimate of the 
geographical latitudes of the regions of active cyclogenesis. The latitude threshold 
appears owing to the vanishing of the mean helicity of atmospheric convection at  the 
equator. Sagdeev et al. (1987) and Moiseev et al. (1988) advanced the theory of 
cyclogenesis further by taking into account the stratification of the atmosphere, heat 
transfer phenomena and convection. 

We should note that Levich & Tzvetkov (1984, 1985) also propose a mechanism of 
energy transfer from small-scale motions in the atmosphere to large-scale ones which 
is based on the helical properties of the turbulence. However, in contrast to our 
approach, which relies on non-vanishing mean helicity of the turbulence, their 
concept employs helicity fluctuations with vanishing mean helicity . 

In this paper we have evaluated the Reynolds terms in a two-scale approach, 
which is used at the last step in evaluating the integral in (A 19). To put it a different 
way, the small parameter h/L  is used to neglect high derivatives of mean velocity 
with respect to spatial coordinates' (cf. (7) and (9), (10)). We regard this 
approximation as a first step in the solution of the problem of the interaction of 
averaged fields with random fields when their scales are different. A more realistic 
approach has to include the energy distribution over all scales and can be developed 
by using the diagram technique. Nevertheless, the form of the averaged equation for 
mean motions of small amplitude presumably would not change, and only the 
coefficients a and v in this equation will become somewhat different. We are inclined 
to consider our results as an indirect manifestation of the energy transfer toward 
larger scales in helical turbulence. 

As possible applications of the Ha-effect in a compressible medium we could 
mention hydrodynamic effects in galactic disks and the generation of vortices in jets 
in active galaxies. It is widely accepted (see e.g. Parker 1979; Ruzmaikin, Shukurov 
& Sokoloff 1988) that magnetic fields of spiral galaxies are associated with the a- 
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effect of small-scale motions. Large-scale helical vortices, hence, have to be generated 
as well as large-scale magnetic fields in these objects. In accordance with 
observations, small-scale turbulent motions in galactic disks are characterized 
by 7,,, - 3 x 1014 s ,  A,,, - 3 x lo2' cm, sound speed c - lo6 cm/s and helicity 
( Vt-V x Vt)7,,, - lo5 cm/s (Ruzmaikin et al. 1988). Then our estimate gives 
y - 0.25 x s-', k ,  - 0.5 x cm-'. That is helical vortices of the scale 
L - 1 kilqparsec arise in galactic disks in a time T - lo9 years, i.e. at the same rate 
as large-scale magnetic fields. Since the thickness of the disk is of order 0.25 kilo- 
parsec, the scale L has to  be regarded as a rough estimate of the horizontal size of a 
vortex. To get a more precise estimate of these parameters one has to solve the 
boundary problem. 

We would like to thank R. Z. Sagdeev, U. Frisch and P. L. Sulem for helpful 
discussions, and reading earlier versions of this paper. 

Appendix 

define direct and inverse Fourier transforms : 
Here we give a more detailed derivation of the averaged equation (18). First of all 

] ( A 1 )  
V(k, w )  = ( 2 x ) - ,  

V(r, t) = (2x) - ,  

exp (iwt- ikr) V(r, t)  drdt, 

exp ( - iwt + ikr) V(k, w )  dk dw. 

s s 
Applying the curl-operator to (14) and performing the Fourier transformation one 
obtains 

(-iw+v0k2)Oi(k,w) = Ri(k,w), (A 2) 

R,(k, W )  = eipq k, P ( k ,  + k,-k) S(W, +w,  - w )  

x ( k l j  s,, + k, ,  6,) (@,> w2) W k ,  4) dkl dk,dw, dw,) (A 3) 

where Ri is the contribution of the Reynolds terms to the averaged vorticity 
equation. The two-point average ( fi(k2, w 2 )  V:(k,, wl)) can be found, using the 
Furutsu-Novikov formula which expresses the mean value of a product of the 
random process 9 and its functional F [ q ] ,  in a convolution of the correlation function 
of the process and the mean value of the functional derivative of F with respect 
to 9: 

In our casc v is a functional of thc random processes Vt and pt. Correlation functions 
of these processes are known and one needs to evaluate the averaged functional 
derivative (6v/6Vt) and substitute it in the Furutsu-Novikov formula, which in our 
case reads 

where ( Vj(k2. w,)Vt,(k,, w 3 ) )  is the correlator of the unperturbed turbulence in the 
Fourier representation. (The term s( Vtpt) (6v/6pt)dk' dw' that could appear in 
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(A 4) vanishes since ( V'p') = 0 owing to homogeneity of the fields Vt and p'.) Since 
the turbulence is prescribed to be isotropic and homogeneous the correlator has the 
form 

(Vt , (k2 ,02 )  Vt,(k,, ~ 1 ) )  = Qmn(k2, ~ 2 )  a(k1 +k2) &(wl+w2)9 (A 5 )  

(A 6)  Qmn(k, w )  = D(k, w )  ( 8 , n n - p  ki:n)-iG(k, w )  cmnt k,, 

where functions D(k, w )  and G(k, w )  depend only on the modulus of the wave vector 
k. When the turbulence is homogeneous, the presence of the &functions in ( A 5 )  
allows the Furutsu formula (A 4) to be simplified: 

In order to evaluate the functional derivative we solve (16) and (17). The Fourier 
transforms of (16) and ( 17) read 

(-iw+uok2) Q(k,w)+c2p;likip"(k,w) 

= sdk ,  dk, dw, do, 6(kl + k, - k) S(W,  + W ,  - W )  

[i(k,mSij+k1jSim) Vt,(kl,wl) vi1)(k27~2)I> (A 8) 
-iwp"(k,w)+p,ik, vm(k,w) 

= -ik, dkldk2dw,dw,S(k ,+k , -k)6(w,+w,-w)  

x b("(k1, w,)Vt,(k,, 4 +pt(k2, 4 V 3 k 1 ,  %)I. (A 9) 

5 
Finding p"(k, w )  from (A 9) and substituting it into (A 8) gives an equation for v(k,o)  
alone : 

Mi, vm(k3 w )  = yi (k ,  w ) ,  

Mi, = [ ( - iw + vo k2)  S,, + ic2w-' k, k,], 

(A 10) 

(A 1 1 )  

where the matrix Mim has the form 

and the right-hand side of (A 10) is independent of 8: 

Fi(k ,  w )  = -i d k l d k , d ~ , d w , 6 ( k , + k , - k ) S ( w , + w , - w )  s 
x (k2m 4j+k,jSim) Cz(k19 ~ 1 )  Vj1)(k2>w2) 

-ic2po1 w-l ki k, dk, dk, do, do, 6(k, + k,- k)  6(wl +w,-w)  

x Lp(''(k, W) Vt,(k,, up) +pt(k,, w,) V$(kl, q ) ] .  (A 12) 

I 
The solution of the matrix equation (A 10) is given by 

q(k,w) = (-io+uok2)-1M;1(k,w)Fi(k,w). (A 13) 

M-' in (A 13) stands for the matrix reciprocal to M: 

k . k  
(A 14) Mi1(  k, W) = Sij - /l( k, W )  +/, 
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where 
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Note that Mi1 reduces to  the projection operator in the limit c +a, P + 1.  

mean value: 
Taking a functional derivative of (A 13) with respect to Vt we find the following 

where 

- i c2p , 'w-1k ,k ,p (1 ) (k -k , ,w-w , ) .  (A 17) 

With equations (A 7)  and (A 16) evaluation of the average ( c ( k z ,  w, )  Vt,(k,, wl)) is 
completed. Substitution in (A2)  and integration over k ,  and w2 yields the 
contribution of the Reynolds stresses to the vorticity equation : 

alq(k,  w )  = - i dk, do, Qmn(-kl> - w i )  s -i(w-w,)+ v,(k-k,)l 

Substituting Qm,  in the form (A 6) in (A 20), expanding nonlinear terms in k,  and w1 
in powers of klk,, dropping higher terms after integration over angular variables and 
performing the Fourier transformation one derives ultimately equation (18) with 
coefficients specified by (21) and (22). 

R E F E R E N C E S  

ANDRE, J. K. & LESIER, M. 1977 Influence of helicity on the evolution of isotropic turbulence a t  

BATCHELOR, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press. 
BRISSAUD, A,, FRISCH, U., LEORAT, J., LESIEUR, M. & MAZURE, A. 1973 Helicity cascade in fully 

developed isotropic turbulence. Phys. FZuids 16, 136G1367. 
FRISCH, U., SHE, Z. S. & SULEM, P. L. 1987 Large-scale flow driven by anisotropic kinetic alpha 

effect. Physica 28D, 382-392. 
GVARAMADZE, V. V., KHOMENKO, G. A. & TUR, A. V. 1989 Large-scale vortices in helical 

turbulence of incompressible fluid. Geophys. Astrophys. Fluid Dyn. 46, 53439 (preprint IKI,  
1987, Pr-1210, Moscow (in Russian)). 

high Reynolds number. J. Fluid Mech. 81, 187-207. 

JANKE, E., EMDE, F. & LOSCH, F. 1960 Tafeln Hoherer Funktionen. Stuttgart: Teubner. 
KRAICHNAN, R. H. 1973 Helical turbulence and absolute equilibrium. J .  Fluid Mech. 59, 745-752. 
KRAUSE, F. & RXDLER, K.-H. 1980 Mean-Field Magnetohydrodynamics and Dynamo Theory. 

KRAUSE, F. & RUDIGER, G. 1974 On the Reynolds stresses in mean-field hydrodynamics. I. 
Berlin : Academic. 

Incompressible homogeneous isotropic turbulence. Astron. Nachr. 295, 93-99. 



The hydrodynamical alpha-e ffect in a compressible medium 

LEVICH, E. & TZVETKOV, E. 1984 Helical cyclogenesis. Phys. Lett. lOOA, 53-58. 
LEVICH, E. & TZVETKOV, E. 1985 Helical inverse cascade in three-dimensional turbulence aa a 

fundamental dominant mechanism in mesoscale atmospheric phenomena. Phys. Rep. 128, 

MOFFATT, H. K. 1978 Magnetic Field Generation i n  Electrically Conducting Fluids. Cambridge 

MOFFATT, H. K. 1981 Some developments in the theory of turbulence. J .  Fluid Mech. 106, 2747.  
MOISEEV, S. S., RUTKEVICH, P. B., TUR, A. V. & YANOVSKY, V. V. 1987 Large-scale vortices 

of nontrivial topology in a turbulent convection. In Proc. Zntl Conf. Plasma Phys., Vol. 2,  
pp. 75-79. Kiev: Nauk. Dunka. 

MOISEEV, S. S., RUTKEVICH, P. B., TUR, A. V. & YANOVSKY, V. V. 1988 Vortex dynamos in a 
helical turbulent convection. 2. Exp. Teor. Fiz. 94, 144-153 (in Russian). (Engl. transl. Sov. 
Phys. JETP 67, 294-299.) 

MOISEEV, S. S., SAQDEEV, R. Z., TUR, A. V., KHOMENKO, G. A. & SHUKUROV, A.M.  1983a 
Physical mechanism of amplification of vortex disturbances in the atmosphere. Dokl. Akad. 

Nauk SSSR, 273, 544-553 (in Russian). (Engl. transl. Sm. Phys. Dokl. 28, 925-928 (1983).) 
MOISEEV, S. S., SAQDEEV, R. Z., TUR, A. V., KHOMENKO, G. A. & YANOVSKY, V. V. 1983b A 

theory of large-scale structure origination in hydrodynamic turbulence. 2. Exp. Teor. Fiz. 85, 
1974-1987 (in Russian). (Engl. transl. Sm. Phys. JETP 58, 1144 (1983).) 

MONIN, A. S. & YAQLOM, A. M. 1975 Statistical Fluid Mechanics. MIT Press. 
PARKER, E. N. 1979 Cosmical Magnetic Fields. Clarendon. 
RIEHL, H. 1976 Climate and Weather in the. Tropics. Academic. 
RUZMAIKIN, A. A., SHUKUROV, A. M. & SOKOLOFF, D. D. 1988 Magnetic Fields of Galaxies, ch. 6. 

Dordrecht : Kluwer. 
SAQDEEV, R. Z., MOISEEV, 8. S., RUTKEVICH, P. B., TUR, A. V. & YANOVSKY, V. V. 1987 On a 

possible mechanism of excitation of large-scale vortices in the atmosphere. In Proc. ZZZ Zntl 
Symp. on Tropical Meteorology, Yalta, USSR, 1985, pp. 18-28. Gidrometeoizdat, Leningrad (in 
Russian). 

SAQDEEV, R. Z., MOISEEV, S. S., TUR, A. V., KHOMENKO, G. A. & YANOVSKII, V. V. 1984 Large- 
scale structures in hydrodynamical turbulence. I n  Self-Organization, Autowaves and Structures 
Far f r m  Equilibrium (ed. V. I. Krinsky), pp. 74-76. Springer. 

STEEEK, M., KRAUSE, F. & RADLER, K.-H. 1966 Berechnung der mittleren Lorentz-feldstarke 
V x B fur ein electrisch leitendes Medium in turbulenter, durch Coriolis-Krafte. beeinflubter 
bewegung. 2. Naturfwsch. ZlA, 36S376. 

SULEM, P. L., SHE, Z. S., SOHOLL, H. & FRISCH, U. 1989 Generation of large-scale structures in 
three-dimensional flow lacking parity-invariance. J. Fluid Mech. 205, 341-358. 

TUR, A. V., KHOMENKO, G. A, GVARAMADZE, V. V. & CHKHETIANI, 0. G. 1987 Helical structures 
in turbulent flows. In  Proc. Intl Conf. Plasma Phys., vol. 2 ,  pp. 203-206. Kiev: Nauk. Dumka. 

TUR, A. V., KHOMENKO, G. A. & YANOVSKII, V. V. 1984 Development of structures in stochastic 
systems and closure of the averaged equations. In Nonlinear and Turbulent Processes i n  
Physics, vol. 2 (ed. R. 2. Sagdeev), pp. 1073-1078. Gordon & Breach. 

369 

1-37. 

University Press. 




